

…… and onward

- the evolution of computer software

From Ada ………………to Zuse

Computers could not exist at all without the silicon chip
and all the other hardware; but all the clever and varied
things they do are attributable to the software - software
which embodies enormous human ingenuity. Who can we
thank?

Bill Bryson said that "a computer is a stupid machine with
the ability to do incredibly smart things, while computer
programmers are smart people with the ability to do
incredibly stupid things. They are, in short, a perfect
match.”

If we asked people to list the names of creators of
software, most would produce a list with one name - Bill
Gates. In fact there are a large number of people who
really deserve to be better known than Bill Gates!

They should be as famous as Bill Gates !

… these Turing Award Winners

Wilkes Dijkstra Thompson & Ritchie Wirth Hoare Thacker

..these Lovelace Medal Winners

Linus Sir Tim Karen
Torvalds Berners-Lee Sparck-Jones
‘BDFL’ OM KBE FRS

.. and two other interesting people

Sophie
Wilson
CBE FRS

Alan
Black

Their contributions have been much greater than his, though he
is the one who has made his fortune! Many have been
recognised by prestigious awards such as the Turing Award and
the Lovelace Medal.

Turing Awards are given by the American Association for
Computing Machinery and include an award of $250,000. Some
people refer to them as computing's Nobel Prizes. I have picked
out six of the recipients here, and I'll be mentioning a few more.

Lovelace Medals, just as prestigious, are given by the British
Computer Society - and here are three recipients. Finally on this
slide I include three people who I find interesting - all are in
Wikipedia. Back to them in a moment.

Of course we can't forget Bill Gates. But he has had no awards of
this kind, though he has been recognised by honorary doctorates,
an honorary knighthood, the Order of the Aztec Eagle etc.

They should be as famous as Bill Gates !

… these Turing Award Winners

Wilkes Dijkstra Thompson & Ritchie Wirth Hoare Thacker

..these Lovelace Medal Winners

Linus Sir Tim Karen
Torvalds Berners-Lee Sparck-Jones
‘BDFL’ OM KBE FRS

.. and two other interesting people

Sophie
Wilson
CBE FRS

Alan
Black

Before going on with the story, there's a bit of personal stuff. Karen Sparck-
Jones observed that "Computing is too important to be left to men." and
continued "I think women bring a different perspective to computing, they are
more thoughtful and less inclined to go straight for technical fixes."

One of her proteges was our daughter Alison. Many of you know that we lost
her to cancer in 2009. Alison co-authored several papers with Karen Sparck-
Jones and Karen Sparck-Jones was acknowledged in Alison's first book. The
acknowledgements in that book ended by thanking Richard for being Richard!
Richard became, and is now our son-in-law. They shared a house in
Edinburgh with two other computer scientists who Kay and I got to know
personally, and one was Alan Black (here), now a world expert in the
generation of speech by computers. Another member of their circle was Robert
Dale, another achiever who is now a professor in Australia. I shall return to
them all later in the talk.

There are two other people in my "interesting" category. James Ellis was a
colleague I knew well, and I'll return to him too, and also to Sophie Wilson.
(No-one has asked ?) BDFL is "Benevolent Dictator For Life"! Torvalds isn't the
only one who has been given this label. Quirky, but not actually silly. There are
a lot of unconventional people in the story I shall tell. In fact we will
occasionally visit geekdom!

The early pioneers

Ada Lovelace Max Newman Alan Turing

The Eniac Programmers John von Neumann Konrad Zuse

Before getting into the main story, I want to spend a short while
on the computer pioneers. Karen Sparck Jones must have been
happy that a woman is recognised as the very first programmer.
That's Ada Lovelace, who worked with Charles Babbage in the
1840s. Babbage's aim was to develop a mechanical computer for
generating accurate tables of mathematical functions. Ada
Lovelace's program was a step-by-step description of how
Babbage's machine could generate mathematical functions called
Bernoulli Numbers. But Ada was also a visionary. She said that:

"The Analytical Engine might act upon other things besides number, were
objects found whose mutual fundamental relations could be expressed by
those of the abstract science of operations. . . Supposing, for instance, that
the fundamental relations of pitched sounds in the science of harmony and
of musical composition were susceptible of such expression and
adaptations, the engine might compose elaborate and scientific pieces of
music of any degree of complexity or extent."

The early pioneers

Ada Lovelace Max Newman Alan Turing

The Eniac Programmers John von Neumann Konrad Zuse

But the really important computer pioneers emerged in the 1930s.
First, there are Alan Turing and Max Newman. I’ll talk about them,
and their work at Bletchley Park, and then return to Eniac, von
Neumann and Zuse.

Turing has had all the acclaim, but Newman should probably be
up there with Turing.

Max Newman lectured to Turing at Cambridge, and provided the
trigger for Turing's work. In 1936 Turing produced an idealized
mathematical model that reduces the logical structure of any
computing device to its essentials. His Turing Machine was the
theoretical prototype of the electronic digital computer, Turing
machines are one of the key abstractions used in modern
computability theory, the study of what computers can and cannot
do. Appropriate Turing machines have found application in the
study of artificial intelligence, the structure of languages, and
pattern recognition.

Bletchley Park -

BOMBE

COLOSSUSHEATH-ROBINSON

Michie

Newman

Turing (AI)

Both Newman and Turing went to Bletchley Park as codebreakers. They
worked in different sections, and it is Newman's work, not Turing's which
led to Colossus, that first computer. While Turing was working on the
Enigma code and breaking it with the electromechanical "Bombe",
Newman was attacking the even more difficult Lorenz code. He devised
Heath Robinson - and that then led to Colossus.

Also at Bletchley was Donald Michie. He too contributed to Colossus.
But it was Turing's ideas which inspired him to make his career in
Artificial Intelligence, setting up the Edinburgh group which I have
touched on already.

- And elsewhere

ENIAC - 1946ZUSE-3 - 1941

EDVAC REPORT - 1945

Von Neumann architecture

But they were not the only people developing primitive computers. ENIAC was the early
American computer, designed to calculate artillery tables. Less well known is the significant work
of Konrad Zuse on programmable calculators in Germany; and Zuse even designed "Plancalcul" a
high level computer language.

Machines like Eniac and Colossus were special purpose machines for which the analysis of the
specific problem had determined the physical hardware. They were no good for anything else,
and 'software' had not yet been born.

In 1945 John von Neumann wrote a paper on the logical design of a digital computer and that
led to the term "von Neumann architecture" which is still the underlying basis of our computers.
The concept needed some method of electronic data storage, and that did not yet exist
There now began a race to devise data storage methods and to demonstrate the first general-
purpose stored program computer. Turing went to the National Physical Laboratory and led a
team on the ACE programme. Newman went to Manchester University to lead the programme
which eventually led to the Atlas machine

And it was this team which demonstrated the "Manchester Baby" testbed in 1948.

In America, von Neumann and others were working towards EDVAC which eventually

became the UNIVAC of the 1950s. But Macarthyism intervened in the American program;
Senior people were said to have communistic tendencies, and military contracts were
cancelled.

The man who is generally reckoned to have won the race to produce a useful computer was
Maurice Wilkes at Cambridge, who died just before Christmas aged 97. EDSAC was switched
on in 1949 and ran the first software program to print out a table of squares. Here's the report
from "The Star" newspaper

“1949 - a Mechanical Brain”
- from “The Star”

On the top floor of a rather drab building in a narrow Cambridge back
street is an apparatus which seems to consist chiefly of a vast number of
valves set in grey painted racks………………...

This is how it works. First Mr Wilkes fed a strip of paper punched with
holes into a "ticker-tape" machine. As the paper ticked through, miniature
television screens showed a row of green blobs ... then almost
instantaneously a teleprinter nearby began to print rows of figures. That
was all………………....

There are not enough "brains" to go around at the moment, but a dozen
would probably be sufficient for the whole country ... The future? The
"brain" may one day come down to our level and help with our income-tax
and book-keeping calculations.

1949 was actually the year I went to Cambridge and while I was there I
attended Maurice Wilkes lectures on computing and EDSAC.

Even the Americans now recognise the place of Colossus, and then EDSAC
in the history of computers. And EDSAC is where the story of software really
starts.

The EDSAC processor, like all processors, was told what to do by a
succession of machine-code instructions - binary numbers drawn from the
memory and obscurely defining the operations and the operands.

About Machine Code Programs

Machine Code - a stream of binary

………10111001 00101111 10001010…………..

“There are 10 types of people in the
world; those who understand Binary and
those who don't.”

Here’s a well-known statement about binary!

Programming in machine-code is possible, but Wilkes and his
team were the first to introduce mnemonics and produce an
'Assembler' to make the programmers difficult job somewhat
easier. Assembler languages remained important for many
more years, especially in times when programs had to be
designed for speed, or had to be shoe-horned into a restricted
amount of computer memory. Nowadays processors are so
fast, and memory so cheap, that this is rarely the case.

Maurice Wilkes & EDSAC

David Wheeler

David Caminer

EDSAC - 1949 and Leo 1 - 1951

So here is Wilkes with EDSAC. And here is David Wheeler, the post-grad who got
the very first computer science PhD for his programming work on EDSAC

The next phase of the EDSAC story was, in many ways, even more remarkable.
The Joe Lyons company, the tea shop chain, were already thinking about a
business computer. In 1951, LEO 1, based on EDSAC, was built and was
successfully used for payroll, inventory and production control tasks. And the met
office also had a LEO 1. How did they do it in a machine with only 8000 bytes of
memory. My laptop there has more than 100,000 times as much memory! Here's
the man who did it. (One leg, lack of recognition apart from an Honorary
Doctorate)

I must now move on. What happened in the 1950s? We'll skip over the first few
years of EDSAC-like computers with thousands of valves and archaic data
storage systems. In the mid 1950s transistors quickly took over from valves, and

magnetic ferrite cores were introduced for data storage. And IBM was becoming

a major computer manufacturer delivering their first mainframe computer in 1954.
Software was now being seen as highly important, and the hardware
manufacturers like IBM and Univac saw it as their job to provide complete
proprietary systems - hardware and software. Specialised software companies like
Microsoft did not arrive for another 20 years.

Types of software

HARDWARE

OPERATING SYSTEM

APPLICATIONS

“NATIVE”

“PLATFORM-

INDEPENDENT”

LANGUAGE SYSTEMS

(external &internal)

INTERNET &

NETWORKING

TYPICAL COMPUTER

I'm going to deal with software under 3 main categories. There's the
'Applications Software' - things like word-processors, desktop publishers,
internet browsers, email programs and many more. Then at the next level
down there are the operating systems, like Windows. And the development of
both of these requires the use of computer languages to write the extremely
complex programs.

Let's start with computer languages. As the size of computer memories got
bigger it rapidly became apparent that assembler language programming was
just too tedious, and that the computer itself must do some of the work of
turning a user-friendly description of a problem into the machine-code.

Going back to EDSACs first 'squares' program, this was inserted into the
machine as a string of gobbledygook. That program was tailored to EDSAC
and could not run on any other machine. Just to explain what I mean by a high
level language program, here is a version in BASIC

Unlike the EDSAC program, this program will in principle run on any machine.
That is one of the advantages of high level languages as long as they conform
to standards.

1957 FORTRAN

1959 COBOL

1960 ALGOL

1970 PASCAL

1972 “C” 1983 “C++”

1964 BASIC

1987 PERL 1990 HTML
1995 JAVA 2000 PYTHON2

BDFL BDFL

1980 BBC BASIC

Larry Wall

Backus - Turing Award

Guido van Rossum
James GoslingBerners-Lee - Lovelace Medal

Richie - Turing Award
Djikstra - Turing Award

Wirth - Turing Award

 Important computer languages - and their creators

The first high-level language was Fortran developed by John Backus at IBM. It was
first delivered to users in 1957. Cobol came next, a language designed by committee
in 1959 in the USA. Both these languages were very successful in themselves
because they were the languages backed by the large vendors like IBM; but they
were dead ends. A far more technically significant early language was Algol, which
resulted from a joint European/American committee which first met in 1958. Djikstra
was one of the main contributors and received a Turing Award for this and other
work This led to the language called Algol60. Tony Hoare was another major
contributor which earned him a Turing Award. He created the version called Elliott
Algol which I learnt and used in 1965. Hoare said of Algol60
"Here is a language so far ahead of its time, that it was not only an
improvement on its predecessors, but also on nearly all its successors"

Not many people used Algol, compared with Fortran and Cobol. But Algol led first to
Coral66, Pascal (1970), then C (1972) and C++ (1983) .

In the late 1960s most programs were still fed to mainframe machines via
cardreaders, and run in succession; it was all pretty tedious. But it was becoming
possible for a user at a terminal to work directly more nearly as we do now. This was
the stimulus for BASIC (1964) a very simple "interpreted" language. This later led to
BBC BASIC, usually regarded as the best implementation of BASIC

1957 FORTRAN

1959 COBOL

1960 ALGOL

1970 PASCAL

1972 “C” 1983 “C++”

1964 BASIC

1987 PERL 1990 HTML
1995 JAVA 2000 PYTHON2

BDFL BDFL

1980 BBC BASIC

Larry Wall

Backus - Turing Award

Guido van Rossum
James GoslingBerners-Lee - Lovelace Medal

Richie - Turing Award
Djikstra - Turing Award

Wirth - Turing Award

 Important computer languages - and their creators

On now to modern times. The days have gone when computers in schools and at
home had to have BASIC and were provided with a manual on BASIC. But in fact
programming facilities are there, either tucked away, or down-loadable, often free of
charge. Versions of C are still pre-eminent for professionals.

But there are now hundreds of other languages - and there are reasons why many
new ones have been developed - some in response to changing circumstances.
One thing that has happened is the enormous reduction in the cost of computer
hardware. In earlier times it was vital to create compact, efficient, software, so the
emphasis was on languages like C generating very efficient code for efficient use of
expensive computer hardware.

In contrast, Perl (1987), a recent language, is designed to make efficient use of
expensive computer programmers.
Perl's creator, Larry Wall said that "Computer language design is just like a stroll in
the park. Jurassic Park, that is.”
The next thing is the increased importance of software which can run on any
computer. A web page for example must be rendered in essentially the same way
on any computer. Two particular languages are associated with web pages - HTML
(1990) and other "mark-up" languages, and Java (1995).

1957 FORTRAN

1959 COBOL

1960 ALGOL

1970 PASCAL

1972 “C” 1983 “C++”

1964 BASIC

1987 PERL 1990 HTML
1995 JAVA 2000 PYTHON2

BDFL BDFL

1980 BBC BASIC

Larry Wall

Backus - Turing Award

Guido van Rossum
James GoslingBerners-Lee - Lovelace Medal

Richie - Turing Award
Djikstra - Turing Award

Wirth - Turing Award

 Important computer languages - and their creators

And my last example is Python. This could be said to be a successor to BASIC, though
much more powerful. It is very popular and easy to run on PCs, Macs, Linux etc - and it is
free.

There's another thing about Python. The vast majority of computer languages are in English.
Unusually, Python has a chinese version. Even more unusually, the language Perl has
versions in Latin and in Klingon !!! These are curiosities, but the Chinese one is serious.

Both Perl and Python are now very popular and are argued about. Python may well be
winning, because it is simpler, while still powerful. As you see, both Wall and Van Rossum
are referred to as "BDFL". They are regarded as the final authorities on the subject.

So, just to remind you, I've been talking about computer languages which are used
to build software or interpret data.
I'll now turn to operating systems, working towards the modern systems like
Windows.

What do operating systems do?

Some functions of Operating Systems
(in computers, smart-phones, tablets …......)

1. WINDOWS

2. UNIX-BASED MACOS X IOS LINUX ANDROID

• User interface - e.g. GUI (Windows)

• Filing system

• Memory management

• Managing peripherals - printers etc.

• Multi-tasking, multi-user

Early operating systems were created by the computer
manufacturer, like IBM. They were written in assembler
language.

Origins of Today's Operating Systems

Personal

Computers
UBUNTU

MACOSX

WINDOWS 8

Servers,

Mainframes

UNIX/

LINUX

1964 MULTICS

1973 XEROX ALTO

1973 CP/M

1969 UNIX

MACINTOSH

MS-DOS

WINDOWS

Smart

Phones

ANDROID

I-PHONE

WINDOWS-
PHONE

Fernando Corbato - Turing Award

Thompson & Richie - Turing Award

Thacker - Turing Award

But in 1964, Fernando Corbato and others began a very ambitious
system called Multics. Multics itself was not very successful, but it
was the seed for modern systems. The Bell Labs people withdrew
from Multics and developed Unix the name being a play on words.
(Multics has too many ickses, so lets have one ix.) Unix is still the
basis for many modern systems, large and small - from mainframes to
today's phones, with all their vast arrays of features.

There’s an old story about the person who wished his computer were
as easy to use as his telephone. That wish has come true, since we
now find it just as difficult to use our phones”

Let's now look in more detail at the evolution of Windows. But just
note the inclusion of the Xerox Alto on this slide. That’s where all the
Windows style systems began.

Evolution of Microsoft Windows

1973 CP/M

1979 Q-DOS

1982 MS-DOS 1990 WINDOWS3

 - WINDOWS95

 - WINDOWS98

(Digital Research)

(Seattle Computer
Products)

1993 WINDOWSNT

 - 2001 WINDOWSXP

 - 2007 VISTA

 -2009 WINDOWS 7

1985 GEM
(Digital Research)

(AMSTRAD)

Tim Paterson

DEC

Ken Olsen Dave Cutler

In the early days unix and other operating systems
could only run on large systems, and microprocessors
were arriving - and CP/M Control Program for
Microprocessors was developed in 1973 by Digital
Research. This was very successful for some years.
Moving on to 1982, IBM were looking for an operating
system for the forthcoming IBM PC and talks with
Digital Research began - and then collapsed. IBM then
gave the contract to the fast-talking Microsoft. Here
they are – Bill Gates right there.

Microsoft then had to conjure up an operating system
from somewhere - and bought one from Seattle
Computer Products for some $50k. They didn't
mention the IBM connection, and later Seattle
Products sued them, and got a $million settlement.

Evolution of Microsoft Windows

1973 CP/M

1979 Q-DOS

1982 MS-DOS 1990 WINDOWS3

 - WINDOWS95

 - WINDOWS98

(Digital Research)

(Seattle Computer
Products)

1993 WINDOWSNT

 - 2001 WINDOWSXP

 - 2007 VISTA

 -2009 WINDOWS 7

1985 GEM
(Digital Research)

(AMSTRAD)

Tim Paterson

DEC

Ken Olsen Dave Cutler

So the IBM PC arrived. The IBM PC world stayed with MS-DOS for a
long time. But elsewhere there were glimpses of the future. Right back
in 1973, Chuck Thacker, who eventually received a Turing Award,
inspired the Xerox Alto, which had the first GUI - Windows-like interface.
But it was too far ahead of its time, and we had to wait until the 1980s
for the first Apple Macintosh, then the excellent Acorn Archimedes, the
fairly horrid GEM system from Digital Research, and last but not least,
Microsoft Windows. For 10 years, the Microsoft Windows systems were
based on DOS and were very flaky! DOS was eventually abandoned
with the arrival of Windows XP and its successors.

Just as with DOS, Microsoft had to bring in talent from outside in
creating Windows NT. That talent came from Dave Cutler and his
software team from DEC. DEC had been extraordinarily successful in
the earlier days of minicomputers, but they were swept away when PCs
arrived. But DEC had great operating systems, created by Cutler; so he
and they were the foundation for the new generations of Windows.

Note Ken Olsen – founder of DEC. He died just last week.

A view on Windows

“In a world without walls, who
needs Gates and Windows ?”

Marketing slogan! -> other systems

Evolution of Apple MACOS X operating system

1973 XEROX ALTO

1969 UNIX

1982 MACINTOSH

2000 DARWIN

2002 MACOS X

“NeXT”

(1985-1996)

Steve Jobs

Thompson & Richie - Turing Award

Thacker - Turing Award

First Apple. They were the first to pick up Thacker's ideas, with the original
Macintosh. But it was still too early, and Apple were in the doldrums in the
late 1980s, failing to capitalise on the original Macintosh. So Steve Jobs was
pushed out in 1985. He formed a company called NeXT with ambitious
plans. By 1996 he had a Unix-based operating system called Darwin. He then
rejoined the still-struggling Apple and used Darwin to create the MacOSX
operating system which has been a major ingredient of Apple's success.

Evolution of Linux operating systems

1969 UNIX

1983 GNU 1985 OSF
1991 LINUX

1993 DEBIAN

2004 UBUNTU

IBM System x

X11 GUI

Mark Shuttleworth - SABDFL

Richard Stallman

BSD

Torvalds - Lovelace Medal

Thompson & Richie - Turing Award

RASPBIAN

Lets go back to the Unix story in a bit more detail. Unix started off
as a proprietary, paid-for system. But in 1983 Richard Stallman
came on the scene, crusading against software copyrights. He
started GNU, and then the open-software foundation. His original
objective was to create a free GNU operating system - Unux-like
but not Unix. That has sort-of happened, but not quite as he
envisaged. While the GNU people were struggling, Torvalds came
along with Linux in 1991. A number of different groups took up
GNU/Linux. One was Debian which led to Ubuntu.
Prior to this, Linux was, with some justification, regarded as for
geeks. It had been held back by a certain amount of turmoil in the
development of a windows-style interface. But by 2004, X11 was
very firmly established. Ubuntu has been driven forward by Mark
Shuttleworth (SABDFL) and is now more or less on a par with the
proprietary systems.

That's all I'm saying about operating systems. Now to Applications
- far too big a subject to be covered comprehensively. So let's just
look at Office Applications.

Origins of Office Applications

VISICALC

dBase

WORD STAR

1986 SAGE OFFICE (AMSTRAD)1979 CP/M Applications

1992 MICROSOFT OFFICE

1970

SQL

1983 GNU

1986 STAR OFFICE

2000 OPEN OFFICE

Ted Codd - Turing Award

Dan Bricklin

Microsoft Office has a very dominant position - such that it
is fairly standard on Macs as well as PCs.

GNU (GPL) Applications
(for Windows, MAC, and Linux)

Open Office (Microsoft Office)

GIMP (Photoshop)

Thunderbird (Outlook Express)

Scribus (Adobe Pagemaker)

Inkscape (Corel Draw)

Free (Proprietary equiv.)

GNU - GPL

“Copyleft”

Free software

GCC

VAST LINUX REPOSITORIES

But in the last few years the position has been reached where all the
most popular kinds of applications are covered exceedingly well by
free versions. And furthermore, there is a wealth of free software
available on Linux, and very easily installed, especially in Ubuntu. In
general this is also available on Macs because they are essentially
Unix systems.

They should be as famous as Bill Gates !

… these Turing Award Winners

Wilkes Dijkstra Thompson & Ritchie Wirth Hoare Thacker

..these Lovelace Medal Winners

Linus Tim Karen

Torvalds Berners-Lee Sparck-Jones

.. and two other interesting people

Sophie
Wilson

Alan
BlackB.D.F.L

Let's just refresh our memory about our people who should be famous.
Most of the ones I've talked about gained their awards from work on
languages and operating systems, and those are probably not the areas
for the awards of the future. So lets look at Artificial Intelligence and
closely related fields.

Artificial Intelligence

1950 TURING TEST

NATURAL LANGUAGE PROCESSING

Karen Sparck-Jones

Lovelace Medal 2007

-programming computers to

- understand human
language

- write/speak human
language

- coeditor of

ACL-MIT Press series
on Natural Language
Processing

(16 volumes)

 Other Authors
EXPERT SYSTEMS

LOEBNER PRIZE

COMPUTATIONAL LINGUISTICS

Yorick Wilks

Loebner Prize 1997

Lovelace Medal 2009

It all starts with Turing at Bletchley Park. Talking to Turing
inspired the 20-year-old Donald Michie to enter the field. Turing
himself proposed the "Turing Test" for machine-intelligence, and
since 1990 there has been an annual competition, the Loebner
Prize, based on restrictedversions of the Turing Test. One winner
of the Loebner Prize was Yorick Wilks of Sheffield University, who
went on to win a Lovelace Medal, two years after Karen Sparck
Jones

Donald Michie went on to establish and direct the Edinburgh
University Department of Machine Intelligence, in 1965, and
Edinburgh has remained at the forefront of such work.

Important areas within Artificial Intelligence are Computational
Linguistics, Natural Language Processing, and Expert Systems.
We can relate aspects of NLP to the Turing Test.

Artificial Intelligence

1950 TURING TEST

NATURAL LANGUAGE PROCESSING

Karen Sparck-Jones

Lovelace Medal 2007

-programming computers to

- understand human
language

- write/speak human
language

- coeditor of

ACL-MIT Press series
on Natural Language
Processing

(16 volumes)

 Other Authors
EXPERT SYSTEMS

LOEBNER PRIZE

COMPUTATIONAL LINGUISTICS

Yorick Wilks

Loebner Prize 1997

Lovelace Medal 2009

First there’s getting computers to understand human language
sufficiently well that they can respond sensibly. It is very difficult to
write software which will reliably analyse human language, because
of all the ambiguities in a language like English, ambiguities which
our brains resolve from contextual clues verbal stress, and common
sense. For example,

“Following Mary, I saw her duck-under the tree” means one thing; “Following Mary, I saw
her duck under the tree” means another!

And sentences like “The British left waffles on the Falklands” could
easily be misunderstood.

Next, there’s the ability to write or speak human language. Back to
that in a moment.

All this comes under NLP

Artificial Intelligence

1950 TURING TEST

NATURAL LANGUAGE PROCESSING

Karen Sparck-Jones

Lovelace Medal 2007

-programming computers to

- understand human
language

- write/speak human
language

- coeditor of

ACL-MIT Press series
on Natural Language
Processing

(16 volumes)

 Other Authors
EXPERT SYSTEMS

LOEBNER PRIZE

COMPUTATIONAL LINGUISTICS

Yorick Wilks

Loebner Prize 1997

Lovelace Medal 2009

At Cambridge, Karen Sparck Jones led work on Natural Language
Processing. And she was the co-editor of a 16-volume series on the
subject, each written by an expert or experts. Our Alison wrote this one.
Robert Dale, who she knew well at Edinburgh, wrote another and Alan
Black was co-author of another. And Yorick Wilks, the Lovelace prize-
winner was another contributor.

Expert Systems are an end-product for this kind of work. For example, in
the medical field, to take just one example, human specialist experts
cannot be everywhere. Can one encapsulate their knowledge and
diagnostic skills, so that it is available to practitioners everywhere.
There’s tremendous interest and there has been some success.

It’s a fascinating field. For anyone wanting to read further on Artificial
Intelligence, there’s another of our Alison’s books – a very readable one,
which is also available in German and Hungarian.

Now just a little now on Alan Black's work, which relates to the second
aspect of NLP.

Alan Black
-- “Festival” Speech Synthesis
System (Edinburgh)

-- Carnegie-Mellon

-- Founder of Cepstral

We've all heard the Dalek-like voice of Stephen Hawking.
And we've heard the realistic voices from gadgets such as
a car satnav. It's easy with the satnav, because the very
small number of alternative phrases can stored and
replayed. It's far far more difficult to take any piece of text
and convert it to realistic speech. But there's been huge
progress. As Chris knows, his Kindle will speak text.
Here’s a little demonstration of Alan Black’s system.
I’ve two more people to talk about – nothing to do with AI.

Sophie Wilson

“Sophie nee Roger
Wilson, the one-woman

once-man whirlwind”

1981 Created BBC BASIC

(still in widespread use)

1983 Designed the ARM Instruction Set;
emulated the ARM1 on a BBC
Micro prior to the making of a chip
which worked first time.

 (leading to the huge success of ARM processors)(now “Chief Architect”, Broadcom DSL)

There’s Sophie Wilson born Roger
Roger/Sophie Wilson and Steve Furber were instrumental in gaining the BBC
micro contract for Acorn. They are said to have worked for 5 days and nights
turning a paper idea into a computer, the Acorn Proton, which could be
demonstrated to the BBC. Then it was Sophie Wilson who created the BBC
Basic interpreter. Next came her work on the ARM prccessor. This is what
Herman Hauser said, looking back on the early work.
“When we decided to do a microprocessor on our own, I gave Steve Furber and Sophie Wilson
two things which National, Intel and Motorola had never given their design teams: the first
was no money; the second was no people. The only way they could do it was to keep it really
simple."
Of course he was making a virtue out of a necessity. But that simplicity is
why ARM processors have triumphed even though Acorn itself was to fail.

Sophie Wilson’s part was to design the Instruction Set on which all software
is based.

She’s now at Broadcom - she’s helped to make them hugely successful
with the processors which are used in broadband routers. See share
prices

Next there is James Ellis. I knew him well from the early 1970s
when we were cooperating on some work; but I was not then
aware of his work on public-key-cryptography. So how’s this
related to computers and software. Well, the security of
information passed over the internet – or by any other
communication system, depends on cryptographic protection,
and that protection is provided by clever mathematics
implemented in complex software. James Ellis had the original
idea. A secret is protected by a pair of keys. The so-called
“public key” will close the lock, protecting the secret, but it will
not reopen it. Only the “private key” will do that. In practice, the
two keys are two huge, unrelated, different prime numbers.

…… and onward

- the evolution of computer software

From Ada ………………to Zuse

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

