Rare Earths | • | Lanthanum | 57 La | • | |---|--------------|-------|---| | • | Cerium | 58 Ce | • | | • | Praseodymium | 59 Pr | • | | • | Neodymium | 60 Nd | • | | • | Promethium | 61 Pm | • | | • | Samarium | 62 Sm | | | • | Europium | 63 Eu | • | | • | Gandolinium | 64 Gd | • | | • | Terbium | 65 Tb | | - Dysprosium 66 Dy - Holmium 67 Ho - Erbium 68 Er - Thulium 69 Tm - Ytterbium 70 Yb - Lutetium 71 Lu - (above are Lanthanides) - Scandium 21 Sc - Yttrium 39 Y ## Lutetium Terbium. Processing La - a similar process is used for most REs. ## Rare Earth uses - Many are used in lasers, magnets, special purpose lighting, computer memory, cameras etc, high temperature components, medical treatments, expensive sunglasses, and - So called (environmentally) green energy devices. - The first large-scale use may have been Sm in Sony Walkman (1979) as magnets. - Here are other uses, and a rough order of apportionment. - CAT car exhaust gases converters 45% - Petrol and oil refining 25% - Permanent magnets 12% - Glass polishing + ceramics 7% - Metallurgical processes7% - Phosphors 3% - Other 1% ## How rare? Where? - Cerium is the 26th most common element in the earth's crust; similar to Copper (Cu), Neodymium is more common than Gold (Au) Thulium the least common but is more abundant than naturally occurring Iodine (I) which is the 47th most rare element. - Mainly mined in India, Brazil, S Africa until1948, then California, until the 1990s when China started mining. China has become the world-leader forcing the price down until other countries ceased production. Some countries are re-starting operations, notably USA, Australia, Canada, Russia, Brazil, - China has 35% of proven global deposits, and currently mines 95% of global production. - Japan has 300,000 tonnes in recycled components! But needs it for electrical industries. - The US-military is taking steps independently to procure materials for strategic purposes, free of foreign supply complexity.