Square numbers

and

Pythagorean Tipples

Square numbers

and

Pythagorean Triples

B

$n^2 + 2n + 1 = (n + 1)^2$

Pythagoras' theorem

For any right angled triangle, the square on the hypotenuse (c^2) equals the sum of the squares on the other two sides ($a^2 + b^2$)

Pythagoras' theorem

For any right angled triangle, the square on the hypotenuse (c^2) equals the sum of the squares on the other two sides ($a^2 + b^2$)

Example: a (3, 4, 5) triangle

 $a^2 + b^2 = c^2$

$a^2 + b^2 = c^2$

An integer (whole number) solution

is a Pythagorean Triple

eg [3, 4, 5]

In the domain of whole numbers ("integers")

if $a^2 + b^2 = c^2$

- Is there more than one solution?
- If so, are there many solutions?
- If so, are there infinitely many solutions?

Primitive Pythagorean Triples

The 3 numbers have NO common factor

<-- Primitive

